Study on Preparation of Flexible Semiconductor Electrode for Dye-sensitized Solar Cells by EPD
نویسندگان
چکیده
In recent years, the development of DSSC produced considerable research interest, including improving efficiency, packaging and flexible possibilities. Flexible possibility has great potential for all kinds of applications. Researches on the bendability of the solar cell thin sheets are mostly focus on the making the soft substrate or electrodes. Previous studies showed that coating method of TiO2 semiconductor electrodes cracked after bending. This phenomenon makes the DSSC efficiency and lifetime substantially decline. The electrophoretic deposition (EPD) technique with a wide range of novel applications in the processing of advanced materials and coatings, has recently gained increasing interest both in academia and industrial sector not only because of the high versatility of its use with different materials and their combinations but also because of its cost-effectiveness requiring simple apparatus. This study used a flexible conductive material (ITO-PEN) as substrate. The semiconductor electrode was prepared by eletrophoresis deposition (EPD) method. After bending test, we observe the morphology and electrical properties of semiconductor electrodes. The photocurrent-voltage characteristics of assembled the DSSC were measured by Luzchem Solar Simulator (standard AM 1.5). Results of flexible DSSC indicated that feature enables the flexible solar cells after bending to avoid fragmentation of semiconductor electrodes, and the efficiency doesn’t decrease.
منابع مشابه
Investigation the effect of substrate photo-electrode based on screen method on performance of dye-sensitized solar cells
In this paper we studied preparation of working films of dye-sensitized solar cells using screen printed method. The organic dye based on phenoltiazine with cyanoacrylic acid as the electron donor group utilized as photosensitizer. Fluorine-doped thin oxide FTO coated glass is transparent electrically conductive and ideal for use in dye-sensitized solar cells. FTO glass was coated by screen pri...
متن کاملInfluence of nanostructured TiO2 film thickness on photoelectrode structure and performance of flexible Dye- Sensitized Solar Cells
A commercial Ti-Nanoxide was deposited on In-doped SnO2 (ITO) polymer substrates by tape casting technique with different thicknesses (7, 14 and 36μm) to be used as photoelectrode in flexible dye-sensitized solar cells (DSSCs). Ruthenium dye was adsorbed on each TiO2 film for 24 h. The resulting photoelectrodes were used to form flexible DSSCs in combination with...
متن کاملRecent development of carbon nanotubes materials as counter electrode for dye-sensitized solar cells
Dye-sensitized solar cells present promising low-cost alternatives to the conventional Silicon (Si)-based solar cells. The counter electrode generally consists of Pt deposited onto FTO plate. Since Pt is rare and expensive metal, nanostructured carbonaceous materials have been widely investigated as a promising alternative to replace it. Carbon nanotubes have shown significant properties such...
متن کاملFabrication of dye sensitized solar cells with a double layer photoanode
Dye sensitized solar cell was fabricated from a double layer photoanode. First, TiO2 nanoparticles were synthesized by hydrothermal method. These TiO2 NPs were deposited on FTO glasses by electrophoretic deposition method in applied voltage of 5 V and EPD time of 2.5-10 min. Then TiO2 hollow spheres (HSs) were synthesized by sacrificed template method with Carbon Spheres as template and TTIP ...
متن کاملEffect of large TiO2 Nanoparticles as Light Scatter in Matrix of Small Nanoparticles to Improve the Efficiency in Dye- Sensitized Solar Cell
In this study, we investigated the effect of using large TiO2 nanoparticles in the matrix of small nanoparticles to improve the performance of dye-sensitized solar cells (DSSCs), as light scatter to increase the light harvesting. The mixed powder was deposited by electrophoretic deposition (EPD) on FTO (F-SnO2 coated glass). It is shown that adding small quantity of larger...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015